4. В треугольнике АВС угол В равен 1300, АВ=a, ВС=b, а в параллелограмме МРКН МР=a, МН=b, угол М равен 500. Найдите отношение площади треугольника к площади параллелограмма.
5. В трапеции ABCD ВС и AD – основания, ВС:AD=3:4. Площадь трапеции равна 70 см2. Найдите площадь треугольника АВС.
II вариант
1. Площадь параллелограмма равна 50 см2, а его периметр 34 см. Найдите стороны параллелограмма, если одна из них в 2 раза больше проведенной к ней высоты.
2. В прямоугольном треугольнике АВС точка О – середина медианы СН, проведенной к гипотенузе АВ, АС=6 см, ВС=8 см. Найдите площадь треугольника ОВС.
3. В равнобедренной трапеции угол между диагоналями равен 900, высота трапеции равна 8 см. Найдите площадь трапеции.
4. В треугольнике АВС АВ=x, АС=y, угол А равен 150, а в треугольнике МРК КР=x, МК=y, угол К равен 1650. Сравните площади этих треугольников.
5. В трапеции ABCD ВС и AD – основания, ВС:AD=4:5. Площадь треугольника ACD равна 35 см2. Найдите площадь трапеции.
Примечание:
Самостоятельная работа III уровня рассчитана на весь урок.
Этап актуализации знаний учащихся проводится с учащимися, которым в дальнейшем будут предложены задачи I и II уровня, при этом при выполнении самостоятельной работы в целях экономии времени к задачам 1 – 3 необходимо начертить рисунок и краткое решение (можно только ответ), к задачам 4, 5 – полное решение. В зависимости от уровня подготовленности класса количество обязательных задач можно сократить до четырех.
4. Подведение итогов (2 мин)
Домашнее задание
Решить первый вариант самостоятельной работы следующего уровня (условия задач в распечатанном виде выдаются на урок и на дом), № 524 (устно). Для учащихся, решавших самостоятельную работу III уровня – дополнительные задачи.
Дополнительные задачи:
1. В трапеции ABCD AD и ВС – основания, AD:BC=2:1. Точка Е – середина стороны ВС трапеции. Найдите площадь трапеции, если площадь треугольника АЕAD равна 60 см2.
2. В трапеции МРНК МК – большее основание. Площади треугольников МНК и КНР равны S1 и S2 соответственно. Найдите площадь трапеции.
3. Дан равнобедренный треугольник АВС, АС – основание, КТ || ВС, МР || AB, EO || AC. Доказать, что SAEMN:SMOCT=BP:BK.
4. В ромбе ABCD ВМ – биссектриса треугольника ABD, ВМD = =157030`. Найдите площадь ромба, если его высота равна 10 см.
5. Дан ромб ABCD, HT || AB, MP || BC, O=MP∩TH. Доказать, что SAOMT ∙ SOHCP=SMBHO ∙ STOPD.
Урок № 9
Тема: Формула Герона. Решение задач
Цель урока:
1. Образовательная: совершенствовать навыки решения задач по теме «Площадь», ознакомить учащихся с формулой Герона и показать ее применение, а процессе решения задач, подготовить учащихся к контрольной работе.
2. Развивающая: развивать логическое, абстрактное мышление, быстроту внимания; формировать приемы умственной деятельности: сравнения,
аналогии, сопоставления; углублять и систематизировать знания по данной теме; развивать точную, лаконичную речь.
3. Воспитательная: учить преодолевать трудности; работать в быстром темпе, собираться с мыслями и принимать решение; воспитывать стремление к совершенствованию знаний.
Ход урока
1.Организационный момент (2 мин)
Учитель приветствует учащихся, сообщает тему урока, его цели, проводит проверку присутствующих.
2. Актуализация знаний учащихся (10 мин)
Проверка домашнего задания
Проверить задачу № 524 (доказательство формулы Герона).
На доске наиболее подготовленный ученик делает рисунок, записывает на доске доказательство формулы Герона:
Материалы по педагогике:
Общие
рекомендации по проверке работ учеников 8 класса ВЗМШ
В данном параграфе мы постараемся дать общие рекомендации по написанию указаний к наиболее часто встречающимся видам ошибок. Опираясь на анализ работ учеников 8 класса заочной школы ВЗМШ, проведенный во втором параграфе, можно выделить следующие группы типичных ошибок: 1) Необоснованное обобщение. ...
Модельное занятие №1 Исследование современной ситуации в образовании
Вопросы для обсуждения мо материалам кейсов. 1. Используя текст одного, или нескольких кейсов, проявите направления изменений в образовании. Для организации работы заполните систематизирующую таблицу Цитаты из текста Кейс 1 Кейс 2 Области изменений в образовании С чем связаны изменения Субъекты, ос ...
Язык логики и его место в базовом курсе
Логика – наука, изучающая методы установления истинности или ложности одних высказываний на основе истинности или ложности других высказываний. Основы логики как науки были заложены в IV в. до н.э. древнегреческим ученым Аристотелем. Правила вывода истинности высказываний, описанные Аристотелем (си ...