BriefEducation
Образование: теория и практика » Проектирование уроков по теме "Площади плоских фигур" » Планы-конспекты уроков

Планы-конспекты уроков

Страница 15

4. В треугольнике АВС угол В равен 1300, АВ=a, ВС=b, а в параллелограмме МРКН МР=a, МН=b, угол М равен 500. Найдите отношение площади треугольника к площади параллелограмма.

5. В трапеции ABCD ВС и AD – основания, ВС:AD=3:4. Площадь трапеции равна 70 см2. Найдите площадь треугольника АВС.

II вариант

1. Площадь параллелограмма равна 50 см2, а его периметр 34 см. Найдите стороны параллелограмма, если одна из них в 2 раза больше проведенной к ней высоты.

2. В прямоугольном треугольнике АВС точка О – середина медианы СН, проведенной к гипотенузе АВ, АС=6 см, ВС=8 см. Найдите площадь треугольника ОВС.

3. В равнобедренной трапеции угол между диагоналями равен 900, высота трапеции равна 8 см. Найдите площадь трапеции.

4. В треугольнике АВС АВ=x, АС=y, угол А равен 150, а в треугольнике МРК КР=x, МК=y, угол К равен 1650. Сравните площади этих треугольников.

5. В трапеции ABCD ВС и AD – основания, ВС:AD=4:5. Площадь треугольника ACD равна 35 см2. Найдите площадь трапеции.

Примечание:

Самостоятельная работа III уровня рассчитана на весь урок.

Этап актуализации знаний учащихся проводится с учащимися, которым в дальнейшем будут предложены задачи I и II уровня, при этом при выполнении самостоятельной работы в целях экономии времени к задачам 1 – 3 необходимо начертить рисунок и краткое решение (можно только ответ), к задачам 4, 5 – полное решение. В зависимости от уровня подготовленности класса количество обязательных задач можно сократить до четырех.

4. Подведение итогов (2 мин)

Домашнее задание

Решить первый вариант самостоятельной работы следующего уровня (условия задач в распечатанном виде выдаются на урок и на дом), № 524 (устно). Для учащихся, решавших самостоятельную работу III уровня – дополнительные задачи.

Дополнительные задачи:

1. В трапеции ABCD AD и ВС – основания, AD:BC=2:1. Точка Е – середина стороны ВС трапеции. Найдите площадь трапеции, если площадь треугольника АЕAD равна 60 см2.

2. В трапеции МРНК МК – большее основание. Площади треугольников МНК и КНР равны S1 и S2 соответственно. Найдите площадь трапеции.

3. Дан равнобедренный треугольник АВС, АС – основание, КТ || ВС, МР || AB, EO || AC. Доказать, что SAEMN:SMOCT=BP:BK.

4. В ромбе ABCD ВМ – биссектриса треугольника ABD, ВМD = =157030`. Найдите площадь ромба, если его высота равна 10 см.

5. Дан ромб ABCD, HT || AB, MP || BC, O=MP∩TH. Доказать, что SAOMT ∙ SOHCP=SMBHO ∙ STOPD.

Урок № 9

Тема: Формула Герона. Решение задач

Цель урока:

1. Образовательная: совершенствовать навыки решения задач по теме «Площадь», ознакомить учащихся с формулой Герона и показать ее применение, а процессе решения задач, подготовить учащихся к контрольной работе.

2. Развивающая: развивать логическое, абстрактное мышление, быстроту внимания; формировать приемы умственной деятельности: сравнения,

аналогии, сопоставления; углублять и систематизировать знания по данной теме; развивать точную, лаконичную речь.

3. Воспитательная: учить преодолевать трудности; работать в быстром темпе, собираться с мыслями и принимать решение; воспитывать стремление к совершенствованию знаний.

Ход урока

1.Организационный момент (2 мин)

Учитель приветствует учащихся, сообщает тему урока, его цели, проводит проверку присутствующих.

2. Актуализация знаний учащихся (10 мин)

Проверка домашнего задания

Проверить задачу № 524 (доказательство формулы Герона).

На доске наиболее подготовленный ученик делает рисунок, записывает на доске доказательство формулы Герона:

Страницы: 10 11 12 13 14 15 16 17 18 19 20

Материалы по педагогике:

Сущность метода круговой тренировки
На протяжении всей своей работы в школе комплексно использую различные методы и приемы, но предпочтение отдаю методу круговой тренировки, так как считаю, что этот метод наиболее эффективен для решения цели всестороннего развития основных двигательных качеств учащихся. Круговая тренировка, осуществл ...

Диагностика воспитанности
1. Охарактеризуйте выделенные в теории педагогики критерии и показатели воспитанности: внешние – связаны с проявлением результатов воспитания во внешней форме, – суждениях, оценках, поступках, действиях личности; внутренние – связаны с явлениями, скрытыми от глаз воспитателя, – мотивами, убеждениям ...

Применение стратегий педагогической поддержки в работе с конкретными учащимися
Внедрение стратегий педагогической поддержки необходимо начинать с анализа конкретной группы учащихся. Провести оценки эмоционального состояния класса и по итогу сделать вывод о необходимости педагогической поддержки. Для оценки психо-эмоционального состояния конкретной группы учащихся можно исполь ...

Разделы

© 2020 Copyright www.briefeducation.ru