BriefEducation
Образование: теория и практика » Анализ ошибок заочной математической школы » Ошибки школьников ВЗМШ и их анализ

Ошибки школьников ВЗМШ и их анализ

Страница 7

Понятно, что в этом случае обобщение неверное, начиная с n=10.

Метод координат на прямой и на плоскости.

Задача 1–4. Подумайте, какая из двух точек правее:

б) A(c) или B(c + 2);

в) A(x) или B(x2);

г) A(x) или B(x – a).

б) Рассуждения ученика: Рассмотрим три случая: 1) c > 0. Если к положительному числу прибавить положительное число, то оно увеличится. Значит c < c + 2 и точка B правее точки A; 2) c = 0. Так как 2 > 0, то точка B правее точки A; 3) c < 0. Если к отрицательному числу прибавить положительное, то оно станет больше. Значит c < c + 2 и точка B правее точки A.

Обсуждение: Это не ошибка, это скорее недочет. Даже по тексту решения видно, что три выделенных учеником случая по сути ничем не отличается. Ведь любое число увеличится, если к нему прибавить положительное число. Ученик просто воспроизводил решение подобно тексту, изложенному в методическом пособии. Отчасти эта ошибка спровоцирована не совсем уместным примером. Разобранный в пособии пример (что правее: A(2x) или B(x)?) действительно требовал рассмотрения трех случаев, действия же ученика излишни. Безусловно следует обратить на это внимание ученика, спросить, «чем отличаются его действия в каждом из случаев?»

Стоит задать ученику следующий вопрос: 1) что происходит с точкой, если ее координату увеличить на 1, на 2? 2) попробуй решить задачу теперь, пользуясь геометрическим смыслом увеличения координаты точки.

в) Рассуждения ученика: часто приводятся следующий ответ: точки совпадают при x = 0 и x = 1, во всех остальных случаях точка B(x2) лежит правее точки A(x).

Анализ ошибки: Можно лишь догадываться, как рассуждал ученик. Понятно, что x2 – неотрицательное число, а значит при x < 0 точка B правее A. Почему он не обратил внимание на промежуток (0; 1)? Потому что в этом промежутке нет ни одного целого числа. Подобная ошибка уже была нами рассмотрена в §1, с. 15 Комментарии проверяющего будут в этом случае аналогичными: «Вы дали неправильный ответ. Например при x = ½, точка лежит все-таки правее, а не левее точки B. Подумайте, какие еще точки вы определили неправильно. Кроме того, перебор не является достоверным источником ответа. Чтобы в ответе действительно не было никаких сомнений, решите эту задачу алгебраически. Для этого вам надо понять: какое неравенство должно выполняться, чтобы точка A была правее точки B. И наоборот: какое неравенство должно выполняться, чтобы точка B была правее точки A».

Анализ ошибки: опять же, от x ничего не зависит. Координаты отличаются на a, поэтому все зависит лишь от a. Если a – положительное, то точка B получается из A при помощи сдвига вправо на a единиц, если a = 0, то точки совпадают, если a – отрицательное, то делаем сдвиг влево. Пояснения к подобной ошибке были написаны выше в пункте 1).

Задача 2–6. Запишите без знака модуля выражение , если a – отрицательное число?

Рассуждения ученика: = a.

Анализ ошибки: Поскольку в данном случае –а > 0, верный ответ: –а. Ошибку спровоцировал нечастый в математике случай синонимии. Знак "–" может выполнять три разные функции: 1) признака отрицательности числа (–2, –5, –2003 и др.) ; 2) символа операции вычитания (a–b и др.); 3) символа операции перемены знака (–a и др.). Ученик в данном случае принял операцию перемены знака за символ отрицательности, не приняв в расчет, что эту роль знак минус может играть только перед числом, а не перед выражением. Хорошо отражает операцию смены знака соответствующая функция на калькуляторе (+/–). Так как большинству школьников он доступен, то есть возможность привести пример, с которым ребенок может непосредственно поработать и лучше понять суть операции.

Страницы: 2 3 4 5 6 7 

Материалы по педагогике:

Историко-педагогические предпосылки становления тестового контроля в педагогической практике
История возникновения и использования диагностического метода, (diagnostikos – гр. – способный распознавать уходит в глубь веков. Имеются сведения, что уже с III тысячелетия до н.э. в странах Древнего Востока (Египет, Вавилон, Индия, Китай) использовались системы конкурсных испытаний интеллектуальн ...

Метод круговой тренировки на уроках физической культуры
Издревле считается, что здоровье нации должно быть своего рода "визитной карточкой" государства, показателем его культуры и процветания, а здоровье индивидуума – критерием личной ответственности и самопознания. Педагоги должны понимать, что воспитание у детей потребности в здоровом образе ...

Основные направления работы с устаревшими словами в семье и в дошкольном учреждении
Дети 5-7 лет очень любят сказки, стихи, былины. Они привлекают их внимание, становятся любимыми на долгие годы, требуют встречи с ними вновь и вновь. Но практика показывает, что дошкольники сами не способны понять значение многих слов и выражений, поэтому здесь требуется помощь взрослых. Для того ч ...

Разделы

© 2025 Copyright www.briefeducation.ru