BriefEducation
Образование: теория и практика » Проектирование уроков по теме "Площади плоских фигур" » Методические рекомендации к изучению темы

Методические рекомендации к изучению темы

Страница 2

4. Докажите, что два прямоугольника равны, если равны их смежные стороны.

5. На рисунке ABCD — квадрат, MN || AB, EF || BC. Найдите площадь четырехугольника AFKM, если AM=CE=3 см, DE = 6 см.

Рис. 4.

При доказательстве теоремы о площади прямоугольника желательно иметь заранее заготовленный чертеж (см. рис. 181 учебника).

В конце второго урока полезно провести самостоятельную работу обучающего характера.

Назначение параграфа — опираясь на основные свойства площадей и теорему о площади прямоугольника, вывести формулы для вычисления площадей параллелограмма, треугольника и трапеции. Кроме того, рассмотреть теорему об отношении площадей треугольников, имеющих по равному углу, на которой основано доказательство ряда теорем из последующих разделов курса.

Материал этого параграфа можно распределить по урокам следующим

образом: площадь параллелограмма — 1 урок, площадь треугольника — 2 урока, площадь трапеции — 1 урок. Оставшиеся два урока рекомендуется посвятить решению задач.

Перед выводом формулы площади параллелограмма полезно провести подготовительную работу, с тем, чтобы напомнить основные свойства площадей и признаки равенства прямоугольных треугольников:

1. На рисунке 182 учебника отрезки ВН и СК — высоты параллелограмма ABCD. Найдите площадь этого параллелограмма, если АВ = 6 см, ВС = 8 см, BAH= 30°.

В конце урока или в начале следующего урока желательно провести самостоятельную работу обучающего характера.

Перед изучением теоремы о площади треугольника полезно устно по заготовленному заранее чертежу решить следующую задачу:

2. Смежные стороны параллелограмма ABCD, равные 8 см и 12 см, образуют угол в 30°. Найдите площади треугольников ABC и ABD.

В процессе решения этой задачи повторяются основные свойства площадей, формула площади параллелограмма, акцентируется внимание на том, что диагональ делит параллелограмм на два равных треугольника.

Доказательство теоремы о площади треугольника и следствий из нее можно предложить учащимся провести самостоятельно (без учебника или с помощью него).

В основе доказательства теоремы об отношении площадей треугольников, имеющих по равному углу, лежит следствие 2° из теоремы о площади треугольника. Поэтому именно на этом следствии желательно акцентировать

внимание учащихся в процессе проверки домашнего задания (задача 474) и в процессе устного решения следующих задач:

3. На рисунке СМ — медиана треугольника AВС, СК — медиана треугольника АСМ. Найдите отношение площадей .

Рис. 5.

4. На рисунке точка М — середина стороны АВ, К — середина стороны СD выпуклого четырехугольника ABCD. Докажите, что SMBKD = SABCD

Доказательство теоремы об отношении площадей треугольников, имеющих по равному углу, рекомендуется провести самому учителю.

Рис. 6.

На применение теоремы об отношении площадей треугольников в классе можно решить следующую задачу (устно).

5. На рисунке 7 A=K, AC = 5 см, АВ = 3 см, KN = 7 см, KM = 2 см. Найдите отношение .

6. На рисунке 8 ОА=8 см, ОВ = 6 см, ОС = 5 см, OD = 2 см, SAOB = 20 см2. Найдите SCOD .

Рис. 7.

Рис. 8.

7. Площадь одного равностороннего треугольника в три раза больше, чем площадь другого равностороннего треугольника. Найдите сторону второго треугольника, если сторона первого равна 1.

8. Задача 479 (б).

Доказательство теоремы о площади трапеции можно предложить учащимся разобрать дома самостоятельно.

В конце урока можно провести самостоятельную работу обучающего характера.

Назначение этих уроков – закрепить навыки в решении задач по теме «Площадь» и подготовиться к контрольной работе. Материал к этим урокам подбирается из нерешенных задач к §1 – 3, а также из дополнительных задач к главе VI.

Задачу 489 желательно решить на первом из этих уроков (вывод формулы площади равностороннего треугольника). На втором уроке следует провести самостоятельную итоговую работу.

Доказательство формулы о площади правильного многоугольника можно предложить учащимся разобрать дома самостоятельно.

Страницы: 1 2 3

Материалы по педагогике:

Оценка деятельности преподавателей кафедры
Мною было в рамках дипломного проекта разработана методика по оценке качества деятельности преподавателей кафедры с использованием интеллектуальных компонентов. Изучив всевозможные методики и положения о рейтинговых системах качества работы преподавателей других вузов, обзор некоторых методик подро ...

Наглядность в обучении иностранному языку
Одним из резервов интенсификации процесса обучения иностранному языку является использование средств наглядности. Умение хорошо излагать свой предмет, педагогическое мастерство учителя основаны на умении строить процесс обучения в соответствии с закономерностями этого процесса, с основными дидактич ...

Расчет экономической эффективности проекта
Эффективность внедрения модуля «Преподаватели» информационно-аналитической системы обуславливается действием ряда факторов организационного, информационного и экономического характера. Организационный эффект проявляется в освобождении сотрудников и преподавателей кафедры от рутинных операций по сис ...

Разделы

© 2021 Copyright www.briefeducation.ru