BriefEducation
Образование: теория и практика » Особенности преподавания математики для детей шестилетнего возраста в условиях современной школьной программы » Приемы организации умственных действий на уроках математики с детьми шестилетнего возраста

Приемы организации умственных действий на уроках математики с детьми шестилетнего возраста

Страница 3

5 + 2 = 7, 2 + … = 7. Какое число надо поставить вместо точек, чтобы второе равенство было верным? Почему?

5 + 3, 5 + 4. Могут ли в данных примерах получиться одинаковые ответы?

Умение выделить признаки предметов и установить между ними сходство и различие – основа приема классификации.

Из курса математики известно, что при разбиении множества на классы необходимо выполнять следующие условия: 1) ни одно из подмножеств не пусто; 2) подмножества попарно не пересекаются; 3) объединение всех подмножеств составляет данное множество. Предлагая детям задания на классификацию, эти условия необходимо учитывать. Сначала выполняются задания на классификацию хорошо известных предметов и геометрических фигур. Например: учащиеся рассматривают предметы: огурец, помидор, молоток, капуста, лук, свекла, редька. Ориентируясь на понятие «овощ», они могут разбить множество предметов на два класса: овощи – не овощи.

Для упражнений в счете детям можно предложить иллюстрации, к которым можно поставить вопросы, начинающиеся со слова «Сколько …?». («сколько больших кругов?», «сколько красных больших кругов» и т. д.)Упражняясь в счете учащиеся овладевают логическим приемом классификации.

Задания, связанные с приемом классификации, обычно формулируются в таком виде: «Разбей (разложи) все предметы на две группы по какому-то признаку». Большинство детей успешно справляются с этим заданием, ориентируясь на такие признаки, как цвет и размер. По мере изучения различных понятий задания на классификацию могут включать числа, выражения, равенства, геометрические фигуры.

При изучении сложения и вычитания в пределах 10 возможны такие задания на классификацию:

Разбей данные выражения на группы по какому-то признаку:

А) 3+1, 4-1, 5+1, 6-1, 7+1, 8-1. (в этом случае основания для разбиения на две группы дети легко находят, так как признак представлен явно в записи выражения).

Но можно представить и другие выражения:

Б) 3+2, 6-1, 4+5, 9-2, 4+1, 7-2, 10-1, 6+1, 3+4. (разбивая на группы данное множество выражений, ученики могут ориентироваться не только на знак арифметического действия, но и на результат.) В данном случае необходимо указать количество групп разбиения.

Задания на классификацию можно давать не только для продуктивного закрепления знаний, умений и навыков, но и при знакомстве учащихся с новыми понятиями. Например, для определения понятия «прямоугольник» к множеству разнообразных четырехугольников и других геометрических фигур можно предложить такие задания и вопросы:

Убери «лишнюю» фигуру; чем похожи все остальные, чем они различаются? Как можно назвать фигуры? Покажите четырехугольники с одним прямым углом, с двумя, с тремя, с четырьмя. Разбей четырехугольники на группы по количеству прямых углов.

Таким образом, при обучении математики можно использовать задания на классификацию различных видов:

Подготовительные задания. К ним относятся: «Убери (назови) лишний предмет», «нарисуй предмет такого же цвета (формы, размеров)», «Дай название группе предметов». Сюда же можно отнести задания на развитие внимания и наблюдательности: «Какой предмет убрали?», «Что изменилось?»

Задания, в которых на основе классификации указывает учитель.

Страницы: 1 2 3 4

Материалы по педагогике:

Школьная программа для подготовительных классов и общие требования к знаниям, умениям, навыкам по математике к детям шести лет
Для того, чтобы изучить особенности обучения математики детей шестилетнего возраста, необходимо ознакомиться с программой общеобразовательной школы по математике. Программа построена с учетом возрастных особенностей шестилеток. Она содержит четыре основные темы и одну перспективно-опережающую, кото ...

Финансирование по уровням образования
Финансовое состояние начальной школы считается вполне благополучным. Во-первых, система финансирования на этом уровне образования давно отлажена. Во-вторых, начальная школа является не столь капиталоемким сектором, как средняя и тем более высшая школа – крупные расходы (в 2002 г. – 29,7 млрд. евро ...

Понятие текстовой задачи и ее роли в курсе математики
Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащихся. Поэтому важно, чтобы учитель имел глубокие представления о текстовой за ...

Разделы

© 2019 Copyright www.briefeducation.ru