BriefEducation
Образование: теория и практика » Анализ ошибок заочной математической школы » Сравнение и аналогия

Сравнение и аналогия

Страница 1

Сравнение – это установление сходства или различия между предметами или их отдельными признаками . Сравнение приводит к правильному выводу, если выполняются следующие условия: сравниваемые понятия однородны и сравнение осуществляется по таким признакам, которые имеют существенное значение.

Процесс сравнения и аналогия тесно связаны. Можно сказать, что сравнение подготавливает почву для применения аналогии. С помощью аналогии сходство предметов, выявленное в результате их сравнения, распространяется на новое свойство. Рассуждения по аналогии можно представить следующей схемой:

Объект A обладает свойствами c1, c2, …, cn.

Объект B обладает свойствами c1, c2, …, cn-1.

Предполагается, но не утверждается, что B обладает свойством cn. Именно поэтому аналогию нельзя считать доказательным методом, ее еще надо обосновать. Тем не менее, рассуждения по аналогии полезны в процессе обучения, так как подразумевают самостоятельную формулировку новых теоретических фактов. Основная ошибка школьников при применении аналогии – это отсутствие рассуждений, которые бы полностью ее обосновывали. Без них решение является неполным или просто неверным.

Рассмотрим наиболее часто встречающиеся в решениях школьников виды необоснованных аналогий:

1) Расширение сферы применения теоремы. Появление такого рода ошибки, как правило, связано с формальным знанием теоремы или свойства. В сознании ученика четко не выделены условия применимости теоремы, и в результате некоторые из них остаются за пределом его рассмотрения. Следствием этого является незаконное использование теоремы. По сути ученик применяет не теорему, а ее аналог, который нередко оказывается неверным. Рассмотрим пример:

Пример Aн1: Хорда, не проходящая через центр окружности, равна диаметру.

Доказательство: Дана окружность с диаметром AB. Выберем на ней произвольно точку C. Середина AC – точка D. Проведем через точки B и D хорду BE. Теперь соединим точки C и E.

Рассмотрим треугольники ADB и DCE. Они равны по стороне и двум углам: AD = DC по построению; ÐB = ÐC как вписанные, опирающиеся на одну дугу AE; ÐADB = ÐCDE как вертикальные. Значит соответствующие стороны AB и EC равны.

Анализ ошибки: «Равенство треугольников по стороне и двум углам» – именно такую условную формулировку часто дают признаку равенства треугольников по стороне и прилежащим к ней углам. В результате школьники просто ищут пары равных элементов: AD = DC, ÐB = ÐC, ÐADB = ÐCDE. При этом условие, что углы должны быть прилежащими соответственно к сторонам AB и DC, забывается. Буквальное восприятие условной формулировки признака равенства треугольников приводит к замене его совсем другим. Произошло расширение сферы применения признака. Ученик воспользовался им без выполнения надлежащих условий, он заменил их на более общие. Это и привело к противоречивому факту – равенству хорды, не проходящей через центр, диаметру. В этом случае лучше всего будет, если ученик самостоятельно, просмотрев предварительно точную формулировку признака равенства треугольников, найдет у себя ошибку.

2) Использование вместо теоремы обратного к ней утверждения. Смысл рассуждений при этом заключается в следующем: если у нас верно AÞB, то верным будет и BÞA. Понятно, что это выполняется не всегда. Приведем простой пример, когда обратная теорема не верна, и ее применение приводит к противоречивому результату.

Пример Ан2: Докажем, что все числа равны.

Для этого возьмем два произвольных числа a и b. Докажем, что a = b.

0 = 0 Þ a2 – 2ab +b2 = b2 –2ab + a2 Þ (a – b)2 = (b – a)2 Þ a – b =

= b – a Þ 2a = 2b Þ a = b.

Переход (a – b)2 = (b – a)2 Þ a – b = b – a не верен. Дело в том, что из равенства чисел следует равенство их квадратов, но из равенства квадратов не следует равенство чисел (будут равны лишь их модули).

3) Ошибки при попытке обобщения. Пусть у нас имеется класс A и класс B. Для элементов класса A выполняется свойство CA. Делается предположение, что для элементов класса B будет выполняться условие CB, которое построено по аналогии со свойством CA в соответствии с особенностями класса B. Например:

Страницы: 1 2

Материалы по педагогике:

Отдельные эпизоды из жизни семьи
Первые годы – самые трудные. Оставшись в Сибири, бабушкины родители привыкли к ней и полюбили. Сразу после войны, конечно, было очень трудно и голодно. Жили в маленькой квартирке в доме барачного типа. Не было вторых оконных рам чтобы утеплиться на зиму. Дров им, приезжим, взять было негде. Всё лет ...

Методика обучения решению составных задач на пропорциональное деление
Задача на пропорциональное деление включает три величины, связанные пропорциональной зависимостью, из них две переменные и одна или больше постоянных, причем даны два или более значений одной переменной и сумма соответствующих значений другой переменной, слагаемые этой суммы являются искомыми. Клас ...

Методики правового обучения в практике работы школ
Большую роль в правовом образовании играют дискуссионные методы. Целесообразно их использовать при обучении праву в старших классах. Дискуссия позволяет развивать самостоятельность школьников, которые высказывают свою точку зрения на проблему. Для проведения дискуссии необходимо сформулировать опре ...

Разделы

© 2020 Copyright www.briefeducation.ru