BriefEducation
Образование: теория и практика » Анализ ошибок заочной математической школы » Общие рекомендации по проверке работ учеников 8 класса ВЗМШ

Общие рекомендации по проверке работ учеников 8 класса ВЗМШ

Страница 1

В данном параграфе мы постараемся дать общие рекомендации по написанию указаний к наиболее часто встречающимся видам ошибок.

Опираясь на анализ работ учеников 8 класса заочной школы ВЗМШ, проведенный во втором параграфе, можно выделить следующие группы типичных ошибок:

1) Необоснованное обобщение.

В общем случае ошибку этого вида можно охарактеризовать следующим образом. Имеется класс объектов. Ученик проверил, что некоторые из них обладают определенным свойством, и на этом основании утверждает, что этим свойством обладают все объекты данного класса. Наша задача – дать такие указания, которые бы убедили ученика в необходимости доказательства данного свойства для каждого объекта этого класса. При решении данной проблемы возникает два случая.

а) Утверждение, полученное при обобщении, неверно. Тогда достаточно привести контрпример, опровергающий доказательство ученика. Подобные ошибки рассмотрены в §2: задачи 2–6 (Комбинаторика) и 2 (Целые числа, §3).

б) Утверждение, полученное при обобщении, верно. Это более сложная ситуация. Контрпримера нет. Голословное требование доказать утверждение, справедливость которого интуитивно ясна, зачастую кажется ученику неубедительным. Чтобы подкрепить его, необходимо наглядно показать ученику, что в иной ситуации его действия могли бы привести к неверному результату. Для этого нужно подобрать соответствующий пример как можно более похожей задачи (лучше просто поменять условия в данной задаче). Примеры подобных ошибок и соответствующие комментарии к ним рассмотрены в §2: задачи 3–5 (Комбинаторика), 3 (Целые числа, §2) и 3 (Целые числа, §3).

С другой стороны, существуют ситуации, когда рассуждения, по форме проведенные учеником только для некоторых конкретных примеров, по сути проходят и для общего случая. Тогда не стоит заострять внимание ученика на строгости доказательства, тем более, что часть восьмиклассников еще не готова перейти на такой уровень строгости. Для этого требуется время и соответствующие задачи, в которых действия в общем случае не так очевидны.

2) Ошибки при использовании аналогии.

а) При изучении новых понятий мы пытаемся встроить их в уже имеющуюся систему знаний. При этом происходит поиск «схожих» с данным понятием структур и автоматическое присваивание понятию тех или иных свойств. К примеру, покоординатное сложение векторов определяется с помощью сложения чисел. Таким образом происходит некий перенос уже изученного материла на новый, что безусловно сокращает время и придает знаниям более системный вид. С другой стороны, раз появляется новое понятие, значит у него есть что-то новое, свойственное только ему. Очень часто у школьников аналогия переходит в отождествление, они не чувствуют разницу между новым и уже изученным понятием. К примеру, операции объединения множеств и сложения чисел имеют общую природу, но при объединении важно то, из каких элементов состоит множество, а при сложении – нас уже будет интересовать лишь количественная сторона. Ученики часто этой разницы не замечают. Данная ошибка разобрана в §2, задача 1–7 (Комбинаторика). Задача проверяющего – показать эту разницу ученику. Сделать это можно при помощи графических иллюстраций, хорошо подобранных примеров, тех же самых аналогий.

б) Синонимия. Иногда в математике одним и тем же символом обозначаются различные понятия. Такое явление называют синонимией. Определить значение данного символа помогают объекты, вместе с которыми он применяется. Скажем, если мы говорим про отрезки и пишем , то в данном случае – это конгруэнция. Если же мы работаем с группами, то символ будет обозначать изоморфизм групп. В математике много таких символов, но их значение однозначно определяются «средой» их применения. Существует такие примеры и в школьном курсе математики. Например, знак «–» имеет три значения (см. задачу 2–6, §2, Метод координат на плоскости).

Страницы: 1 2

Материалы по педагогике:

Игры на уроках по темам: «Сложение и вычитание»,«Величины и их измерения»
Рассмотрим на примере уроков по темам: «Сложение и вычитание», «Величины и их измерение» роль дидактических игр. Урок по учебному пособию В. Д. Герасимова. Тема урока: «Сложение и вычитание. Знаки «+» и «-»». Цель урока: 1. Совершенствовать навык сложения и вычитания, устных вычислений в пределах 1 ...

Абстракция, конкретизация и обобщение
Абстракция состоит в том, что субъект, вычленяя какие-либо свойства, признаки изучаемого объекта, отвлекается от остальных. Абстрагирование, процесс применения абстракции, обычно осуществляется в результате анализа. При этом признак, отделяемый от объекта, становится самостоятельным объектом мышлен ...

Уровни познавательной активности
Низкий уровень. Учащимся с данным уровнем познавательной активности не свойственны агрессия или демонстративный отказ от учебной деятельности. Как правило, они пассивны, с трудом включаются в учебную работу, ожидают привычного давления со стороны учителя. При восприятии учебной задачи эти учащиеся ...

Разделы

© 2019 Copyright www.briefeducation.ru